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Resolution and Peak Capacity
in Equilibrium-Gradient Methods of Separation

J. CALVIN GIDDINGS and KARIN DAHLGREN

DEPARTMENT OF CHEMISTRY
UNIVERSITY OF UTAH
SALT LAKE CITY, UTAH 84112

Summary

A theoretical analysis is made of the relative resolving power of
equilibrium-gradient separation methods, such as isoelectric focusing
and density-gradient sedimentation, and the corresponding kinetic
methods, such as electrophoresis and kinetic centrifugation. Both general
and specific equations are derived for resolution and peak capacity.
It is concluded that peak capacity, the most general index of over-all
resolving power, is of comparable magnitude for these two different
approaches.

Two new equilibrium-gradient methods of separation are proposed,
these employing dielectrical and thermal diffusion forces, respectively.

Parameters such as the “rate of generation of variance,” or “plate
height,” do®/dZ, “peak capacity,” and “resolution” have been used
extensively in the characterization of chromatographic systems. Al-
though these parameters have found most use in gas and liquid
chromatography as well as in gel permeation chromatography, their
importance is more universal. Giddings (1) discussed their usefulness
for characterizing and comparing the efficiency of separation methods
as different as ultracentrifugal sedimentation and electrophoresis. In
both cases separation is achieved through the introduction of an
external field giving rise to forces acting on the particles and leading
to a steady differential migration.

In this work we would like to extend the use of some of these
characteristic separation parameters to encompass a general class of
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equilibrium-gradient methods. These methods are exemplified by
isoelectric focusing (2) and density-gradient (isopyenic) sedimenta-
tion (3). We will compare the intrinsic resolving power of such
methods with their kinetic counterparts.

An equilibrium-gradient method, as the term is used here, denotes
a method in which a gradient or combination of gradients causes each
species to seek an equilibrium position along the separation path. At
the equilibrium point the net force on a particle (molecule) is zero
as shown in Fig. 1. Any deviation from this position caused by
diffusion, ete., gives rise to a restoring force which thereby tends
to keep the concentration pulse focused in a narrow region around the
equilibrium point.
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FIG. 1. Force vs. distance and the formation of a zone in an equilibrium-
gradient separation system.

In practice equilibrium-gradient methods utilize a primary gradient
(e.g, an electrical or “gravitational” potential), which is the same
as in the corresponding kinetic method. Superimposed is a secondary
gradient in some property (usually pH or density) which, in combina-
tion with the primary gradient, causes a reversal in the force at a
given point. For example, the force per mole on a charged particle is
¢FE, where g is the effective charge, § the faraday of electricity,
and E the electric field strength. The latter is relatively constant and
represents the primary gradient in electrical potential. Effective charge
g 1s made to vary and, most importantly, to reverse sign at some point,
by the secondary pH gradient.

Methods other than those employing electrical and centrifugal
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forces are conceivable. We propose here two other possibilities. (a)
In a strongly nonuniform electrical field, uncharged species with high
dielectric constants migrate selectively to the high field regions. If
a secondary gradient in the dielectric constant were imposed (such
a gradient would occur naturally in an appropriate solvent mixture),
each species would seek equilibrium at a point where the dielectric
constant of the medium equaled its own. Components would thus
separate according to differences in dielectric constant. This method
would be applicable only to very large species. (b) The fractionating
power of thermal diffusion could be used by employing a solvent
mixture which, by its own partial separation, would reverse the sign
of the thermal diffusion factor for each species at some point. The
point of reversal would be the equilibrium point.

While the dielectric and thermal fields proposed above are intrinsi-
cally weaker than electrical or centrifugal fields, the possibility of
their use, perhaps under special circumstances, illustrates the broad
generality of the equilibrium-gradient class of separations.

THEORY

We will first prove that the zonal shape for static equilibrium is
approximately Gaussian. This has been shown earlier for the individ-
ua! cases of density gradient centrifugation (3) and isoelectric
focusing (2). Here we give a proof for the general case without
introducing speeific conditions. The desired general expression for
the standard deviation, o, will then be used to obtain values for
resolution and peak capacity.

The force per mole acting on a species in a gradient field is, of
course, a function of position z, F (z). At the equilibrium point, z = Z,,
the force vanishes. F(z) can be described by a Taylor expansion
about, this point

F(z) = F(Z.) + [de) LZQ (z — Z.)

n % [d2F(z)] C—2Z)+ ... ()
=7 o

dz?

in which F(Z,) =0, as stated above. Terms of second and higher
order may be assumed negligible for narrow zones. Therefore

Flz) ~ [C—l%] @ — Z.) @)

2=Z
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If we let
k= —[dF(2)/dze]ez., 3)
and transform to the coordinate system 2’ = 2 — Z,,, Eq. (2) becomes
F@) = —k (4)

which is simply a Hooke’s law force with &k the effective Hooke’s law
constant. The potential energy (equivalent to the chemical potential)
in this Hookian well is k2z"2/2. Using this in the Boltzmann term gives
the concentration relative to that at the equilibrium point

(C/Cy) = exp(—kz"?/RT) (5)
This is a Gaussian distribution with standard deviation
o = (RT/k)} (6)

This is the general expression needed for the study of resclution
and peak capacity, below.

PLATE HEIGHT

Plate height is defined as H = do?/dZ for normal chromatography,
sedimentation, and electrophoresis (7). However, with equilibrium-
gradient methods, variance o is not generated in proportion to dis-
tance Z migrated, so the proportionality represented by H makes
little sense in this case. With the former techniques plate height H
and the number of plates N are useful stepping stones to resolution
and peak capacity. Here we proceed directly to these parameters.

RESOLUTION

Resolution Rs for two peaks is defined as AZ/4s, where AZ is the
distance between peak centers and ¢ is the average standard deviation
in width of the two peaks. For closely related substances, the two o's
will be approximately equal so that ¢ may be replaced by either
individual o. This step aids mathematical simplification.

The use of ¢ from Eq. (6) in the above expression for Rs yields

AZ
= IRT )} @)

This can be rearranged to give

Rs
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1/ Ae 4
Rs =3 <2RT) ®)

Ae = 3k(AZ)? 9

and, in view of the discussion following Eq. (4), is the energy needed
to displace a species from its own equilibrium position to that of its
neighbor. Thus Rs is determined by the ratio, Ae/RT, of two energies,
a displacement energy Ae and thermal energy RT. This type of ratio
appears also in the kinetic methods, particularly in describing the
number of theoretical plates.

We may now inquire into the general effect of changing the steepness
of the secondary gradient. If there is an M-fold increase in gradient,
there will be correspondingly an M-fold increase in the force at any
point and thus an M-fold increase in the Hookian force constant k.
The distance between peak centers AZ will, on the other hand, change
with M-, since increasing steepness will bring the peaks together.
The net effect on Ae of this M-fold gradient increase is therefore a
change by a factor of M (M-1)2 = M-, Therefore, Rs, which Eq. (8)
shows to depend on (Ae)*z, will change by M-*2. In summary, resolu-
tion is inversely proportional to the square root of the gradient. While
narrow peaks are obtained in steep gradients, they become crowded
together to more than an offsetting degree.

where Ae is defined by

Density-Gradient Sedimentation

In the particular case of density-gradient sedimentation, the force
is given by

F(z) = (p — p)) VG (10)

where G is the centrifugal acceleration, %z, V the molar volume, and
p and p, the densities of the entrained species and of the solvent,
respectively. A gradient exists in the latter. The force constant, defined
by Eq. (3), becomes

k= VG dpo/dz (11)
The distance between peak centers is

AZ = Ap/(dpo/dz) (12)
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i.e., it is the distance in which the density increment due to the
gradient equals Ap, the density difference of the two components. The
substitution of these two expressions into Eq. (7) yields

Ap Va }

Rs ==y <RT dpo/dx) (13)
an equation which gives the explicit conditions necessary for unit
resolution. Such an equation has not heretofore been available for
density-gradient sedimentation.

Equation (13) can be used to predict the resolvability of biological
species under a given set of experimental conditions, provided their
densities and molar volumes are known. As an illustration of this,
we can apply the resolution expression to the classical separation of
isotopically labeled and unlabeled E. coli DNA performed by Meselson
and Stahl (4). The density difference between the two types of DNA
is Ap = 0.014 g/cm?, the density of unlabeled DNA being 1.710 g/cm?.
The molecular weight in CsCl solution was determined as 9.4 X
10° for N**DNA, which gives V = 9.4 X 10°/1.71 cm? Quantity @
in the experiment was 140,000g and RT == 2500 Joule/mole or in
CGS units 25 X 10° ergs/mole at the ambient temperature. Assuming
a gradient dp,/dz = 0.08 g/cm*, we can prediet from Eq. (13) a
resolution, Bs = 2.2. The measured value, from Fig. 2b of their paper,
is 1.5. The accord is good in view of the fact that any imperfection
in the system will detract from the theoretical limit, 2.2,

Isoelectric Focusing

In the case of isoelectric focusing the basic force equation, as
mentioned earlier, is

F = ¢5E (14)

There are equivalent forms involving the zeta potential. Force constant
k from this and Eq. (3) becomes

- g% _ _sp d¢ dpH
k= —%E i FE Il dz (15)
Peak separation AZ is obtained as
AZ = ApH/(dpH/dz) (16)

where ApH is the isoelectric pH increment between the two com-
ponents. The substitution of these two expressions in Eq. (7) gives
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_ ApH (—SE dq/de)*
s = =4 ( RT dpH /dz (17)

which again gives the explicit dependence of Rs on basic system
parameters. A similar equation has been obtained by Vesterberg and
Svensson (5).

The above resolution expressions all hinge on the linear force
approximation given in Eq. (2). In the above case the validity of
the approximation is less obvious because dq/dpH is generally not
constant over a pH range extending more than about 1.5 pH units
on each side of the isoelectric point. This is illustrated for ovalbumin
in Fig. 2 where electrophoretic eharge z is plotted against pH (6).

+w T T T T L T T T

+20 .

+10

[}
H
(o]

pH

FIG. 2. Variation of electrophoretic charge ¢ with pH for ovalbumin
[Overbeek (6)1.

In order to examine the effect of the nonlinearity, we calculate o
in pH units, oy, for a typical system involving ovalbumin. Using
opn = o dpH/dz along with ¢ = [RT/ — $E (dq/dpH) (dpH/dz)] ",
the latter obtained by combining Egs. (6) and (15), we obtain

_( RT dpH/dz >*
oH = (—s;E dg/dpHL (175)

The tangent line in Fig. 2 shows dq/dpH = —9 at the isoelectric
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point. If we assume a pH gradient of 0.05 pH/ecm and a field of 25
V/em, Eq. (17b) yields o,u = 2.4 X 10, The total peak would be
spread over about 4o,z or about 102 pH units. Since observable
deviations from linearity do not oceur in less than one or two pH
units, the effect of nonlinearity is negligible.

Since peak width in pH units is typically 10-2, neighboring peaks
can be resolved if their isoelectric points differ by only 0.01. This
can be confirmed directly from Eq. (17) by noting that a unit resolu-
tion is obtained using the above parameters.

PEAK CAPACITY

Peak capacity, n, is the maximum number of components resolvable
by a given technique under specified conditions, If component peaks
of average width 46 are distributed over path length L, the peak
capacity is clearly :

n = L/4a (18)

From Eq. (6),5 = (RT)Y:(1/k)*, a term that can be replaced by
(RT)¥2(1/k)*>, where k is the average denoted by 1/[{1/k)*2]% The
peak capacity thus becomes

kL? \}
n = (m) (19)
This equation shows that peak capacity increases in proportion to
total path length L and with the square root of the secondary gradient
as reflected in k.
If we define the term AE by analogy to the definition of AE in Eq.
(9), we have

AE = 3kL? (20)
In terms of this energy parameter, the peak capacity from Eq. (19)
takes the form
AE \}
o= (47) 2D

which, like Eq. (8) for resolution, involves a ratio of energy terms.
The ratio of n to Rs can be shown, using Egs. (8), (9), (20), and (21),
to have the simple form, L/AZ.

More importantly, for it encourages the comparison of equilibrium-
gradient and kinetic methods, Eq. (21) resembles closely the equation
for peak capacity in the kinetic case
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___A”'ma.x 3
Nkin = (W) (22)
where in this case the energy term, —Au™, is the chemical potential
or energy change of a species migrating the full path length L under
the influence of the primary field. Below we seek to compare —Au™®~
and AE since this permits the direct comparison of peak capacities by
the two basic methods.

We postulate a model system with a uniform gradient throughout.
Thus the force is a linear function of distance for each component.
The force curve for the component whose equilibrium location is at
position L is shown in Fig. 3 as the diagonal line which, of course,
reaches zero at equilibrium point L. The slope of the line is —Fk, as
shown by Eq. (3). The shaded triangular area, which represents the
energy drop of the species in moving from the origin to L, is seen by
the figure geometry to be 14kL2. This, of course, is AE.

KL KINETIC '
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|
|
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w GRADIENT
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FIG. 3. Comparison of force vs. distance plots for kinetic and
equilibrium-gradient methods.

The same component separated by a kinetic method would have a
uniform force throughout, represented by the upper horizontal line.
(The two lines under optimum conditions will begin at the same point
since the highest point available will provide in one case the maximum
gradient and in the other case the maximum force.) The energy (or
chemical potential) drop of the component moving from the origin to
L under this circumstance would be simply the rectangular area on the
plot, —Au™** = kL% Thus we have the approximation
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—Apmax = 2AK 23)
The comparison of Eqs. (21) and (22) now yields

n = '\/§nkin = Nkin (24)

which shows the peak capacity to be the same order of magnitude
whether equilibrium-gradient or kinetic methods are used.

The foregoing comparison hinges on the linear model, the validity
of which we will discuss shortly, and on a particular chemical potential
model, Case a of Ref. I, which leads to Eq. (22). However, it was
shown in the last-named reference that the final result is not strongly
dependent on the model chosen.

Density-Gradient Sedimentation

The combination of Eqgs. (11) and (19) yields

VGL? dpo/dz\}
"= < 16R;3/ z> (25)

where, of course, V, and to a lesser extent G and dp,/dz, are appropri-
ate averages. An alternate form is obtained by replacing L dp./dz by
[por — poo], the total density increment of the solvent over the separa-
tion path. This substitution gives

_ 3
= (" ) @

The ratio of n to Rs, as shown by combining this equation with Eq.
(13), is the simple density ratio, [por — poo]/Ap.

From Eq. (25) we can estimate approximately the number of
resolvable components in a certain cell with a certain steepness of the
density gradient. Assuming V = 6 X 10° em?, ¢ = 105,000g, dp,/dz =
0.05 g/cm*, RT = 25 X 10° ergs/mole and a cell length, L, of 1.5 c¢m,
Eq. (25) predicts a peak capacity of n = 13. Note, however, that this
rapidly becomes smaller as molecular size decreases.

Isoelectric Focusing

Here one combines Eqgs. (15) and (19) to get

3 (-gE(dq/dexde/dz)L?)*
"= 16RT

(27)
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where dq/dpH is the appropriate average. The alternate form is
obtained by replacing L dpH/dz by [pH, — pHo|, the total pH incre-
ment. In this case we have

_ (—sE(dq/dme[pHL — pHo1)*
"= 16RT

The uniform-gradient model is approximate for isoelectric focusing
because dq/dpH is not constant, as seen in Fig. 2. This does not affect
the above two equations, but does alter the comparison of kinetic and
equilibrium-gradient methods. The peak capacity of the former differs
from our earlier estimate since —Au™* becomes kL2a/(a 4 b) in
place of kL? (a and b are defined by Fig. 2). Thus the equation

—Apmex = 20AE/(a + b) (29)

replaces Eq. (23). However, since a and b will be of similar magnitude,
the conclusion stated in Eq. (24), that peak capacities are comparable
in value whether a kinetic (in this case electrophoresis) or equilib-
rium-gradient (isoelectric focusing) method is used, is still valid.

(28)

DISCUSSION

The explicit formulas obtained here for resolution and peak capacity
provide guidelines for achieving separations. Of equal importance, a
meaningful comparison of the potential of kinetic and equilibrium-
gradient methods has been made. The latter comparison merits addi-
tional amplification.

Although kinetic and equilibrium-gradient methods utilize the same
primary fields (electrical or gravitational), they will not necessarily
fractionate the same sample systems. The density gradient method,
for example, will not fractionate solutes that have different sizes but
equal density, whereas the kinetic sedimentation method will fail for
systems where the net force and frictional coefficient are proportional
to one another. This basic difference in function must provide the
initial criterion between the two methods. However, for solutes with a
reasonably broad spectrum in properties, the total of resolvable peaks
(the peak capacity n) provides a general criterion of over-all resolving
power. Resolution does not provide such a criterion because it is
specific for a particular pair and the answer depends on the detailed
properties assumed for each component, the choice of which may arbi-
trarily favor one method over the other. Therefore the peak capacity
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provides a general, and at the same time an experimentally meaning-
ful, eriterion of fractionation efficacy.

It has been stated that the resolving power, at least in sedimenta-
tion, is inherently better in kinetic than in equilibrium-gradient meth-
ods (7). Conversely higher resolving power has been claimed for iso-
electric focusing than for electrophoresis (5). Our own conclusion is
that the two approaches are generally comparable in resolving effec-
tiveness for any of the basic primary fields. However, the important
matter of resolution time, not considered in detail here, perhaps favors
the kinetic methods.
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